
The Evolution of a Hierarchical Partitioning Algorithm for Large-Scale Scientific
Data: Three Steps of Increasing Complexity

Chuck Baldwin, Tina Eliassi-Rad, Ghaleb Abdulla, Terence Critchlow

Lawrence Livermore National Laboratory
baldwin5@llnl.gov, eliassi@llnl.gov, abdulla1@llnl.gov, critchlow@llnl.gov

Abstract

As scientific data sets grow exponentially in size, the
need for scalable algorithms that heuristically partition
the data increases. In this paper, we describe the three-
step evolution of a hierarchical partitioning algorithm for
large-scale spatio-temporal scientific data sets generated
by massive simulations. The first version of our algorithm
uses a simple top-down partitioning technique, which
divides the data by using a four-way bisection of the
spatio-temporal space. The shortcomings of this
algorithm lead to the second version of our partitioning
algorithm, which uses a bottom-up approach. In this
version, a partition hierarchy is constructed by
systematically agglomerating the underlying Cartesian
grid that is placed on the data. Finally, the third version
of our algorithm utilizes the intrinsic topology of the data
given in the original scientific problem to build the
partition hierarchy in a bottom-up fashion. Specifically,
the topology is used to heuristically agglomerate the data
at each level of the partition hierarchy. Despite the
growing complexity in our algorithms, the third version of
our algorithm builds partition hierarchies in less time and
is able to build trees for larger size data sets as compared
to the previous two versions.

1. Three hierarchical partitioning algorithms

Scalable algorithms are needed to partition tera-scale
data sets [1, 5]. This is especially true in scientific
domains, where sizes of the data sets have grown
exponentially in recent years. We describe the evolution
of a hierarchical partitioning algorithm for large-scale
scientific data sets. Specifically, large-scale simulation
programs produce our data sets in mesh format. A data
set in mesh format consists of interconnected grids of
small zones, in which data points are stored. Figure 1
depicts the mesh produced from an astrophysics
simulation of a star in its mid-life. Mesh data usually
varies with time, consists of multiple dimensions (i.e.,
variables), and can contain irregular grids. Musick and
Critchlow provide a nice introduction to scientific mesh
data [4].

Figure 1. A Mesh Data Set Representing a Star

The first and simplest version of our partitioning

algorithm employs a top-down partitioning technique by
performing a four-dimensional bisection on the spatio-
temporal space. The major advantage of this approach is
the generation of a global decomposition of the data.
However, this global partitioning comes with three major
drawbacks. First, it is computationally too expensive to
scale well to tera-byte data sets. This is largely due to its
need to convert a mesh data file from its original
simulation-specific format into a consistent vector-based
representation. Second, it is not able to capture the
information stored in the topology of a mesh data set.
Lastly, the bisection procedure works best when there is a
uniform density of grid cells throughout the whole
problem domain. Typically, however, our domains have
complex structures such as non-uniform distributions of
grid cells, irregular boundaries, and unusual topologies.
Figure 2 shows two examples of such domains.

Figure 2. Examples of Complex Domain Structures

(a) L-Shaped Domain

(b) Rectilinear Domain
with Edges Glued Together

To address the above issues, our algorithm evolves to a
bottom-up approach. First, however, we remove the time
dimension from the partitioning space and redefine our
partitions on the three-dimensional spatial structure of the
data. This new partition space allows us to produce
hierarchies that can easily be parallelized for data access.

The second version of our algorithm (called GRID)
utilizes a grid-based bottom-up partitioning approach.
GRID constructs a hierarchy by systematically
agglomerating the underlying Cartesian grid that is placed
on a mesh data set. Specifically, a simple coarsing
strategy starts at the initial grid configuration and
iteratively produces coarse level collections of cells from
fine level collections of grid cells. Unlike our top-down
approach, GRID scales well to large data sets, deals
effectively with irregularities of the grid, and produces
hierarchies with better structure than the top-down
algorithm. However, it is still not able to capture the
topological information (i.e., the true physical
relationships of the grid cells) of a mesh data set

The third version of our algorithm, called
TOPOLOGY, improves on the previous bottom-up
approach by utilizing the intrinsic topology of the data
given in the original scientific problem to build the
partition hierarchy. TOPOLOGY uses a two-pass
approach. In the first pass, each coarse cell is assigned
the “best” neighborhood configuration (with respect to its
rectilinear cell shape). This operation is a local search on
the 2N possible neighborhood configurations of a coarse
cell, where N is the number of dimensions. For instance,
in two dimensions, the four possible locations for a given
cell (within a coarse agglomeration) are denoted by the
grey boxes in Figure 3.

Figure 3. Four Possible Locations for a Cell within a
Coarse Agglomeration in Two Dimensions

Since the first pass of TOPOLOGY is a local operation
on cells, no information about the past and future
agglomerations in other regions of the domain is taken
into consideration when creating ancestor-descendent
relationships. For this reason, some coarse
agglomerations can result in trees that are non-binary,
non-quad, or non-octree. For instance, it is easy to be in a
situation (after the first pass) where the coarse cells are
arranged as shown in Figure 4.

Figure 4. A Non-Quad Tree Coarse Cell Arrangement

The coarse cells (C1, C2, and C3 given by solid lines)
have been arranged in such a way that indeterminate
behavior for neighbors exists for the coarse cells. For
example, C2 has two neighbors to its right. The second
pass corrects such structural problems associated with
indeterminate behavior for neighbors of coarse cells. In
particular, the second pass has N-dimensional subphases.
Each subphase, s, corrects the (N – s) dimensional
structures, planes, lines, and points. Each subphase uses
information from all the previous subphases to correctly
place the coarse cells. It is important to note that in the
second pass, only neighbor relations are adjusted and not
the coarse cells (which were defined in the first pass). For
example, in two dimensions, the problem illustrated in
Figure 4 can be fixed by (i) adjusting the face neighbors
so that cell C2 “slides” down half of a coarse grid cell and
(ii) making sure the neighbors for all local coarse cells
reflect this slide (see Figure 5).

Figure 5. A Fix for a Non-Quad Tree
 Coarse Cell Arrangements

A heuristically complex procedure is used to compute

these corrections. Our correction procedure utilizes the
information about the (faces, edges, and corners of)
neighbors of the coarse cells’ descendents to establish
neighbors at the coarse level. For instance, to find the
neighbors for C2 (shown in Figure 4), we utilize the
information for neighbors of cells 1, 2, 5, 6, 9, 10, 11, and
12.

In our topology-based algorithm, a new coarse level is
created in the first pass and neighbors of coarse cells are
identified in the second pass. The second pass rearranges
the grid somewhat. The degree to which the domain of
coarse cells is rearranged is bounded by the fine-cell sized
moves. The degree to which a coarse level “fits” a fine
level can be measured by the number of ancestor-
descendent relationships that are established verses the
number which could be established. This measure,

C3

C1 C2
3 4

7 8 5 6

9 10

11 12

1 2

1 2

3 4

7 8

5 6

9 10

11 12

C2

C3

C1

however, is not very precise since the ancestor cells are
logically at coarser resolutions. In addition, since the
ancestor cells’ bounding boxes are approximated, they
may geometrically be larger than the strict union of fine
cells involved. In this case, there are no perfect spatial
measurement that can capture what is being created. We
have defined a reasonable measure, called percentage
filled, which measures the non-empty volume of a cell.

2. Experiments

Due to space limitations, we describe the performance
of the GRID and TOPOLOGY algorithms on one
scientific data set (see [2] for more results). Our data set,
called Djehuty-50gb, depicts a star in its mid-life and
contains readings in point locations of a continuous
medium (see Figure 6). The data set is represented as
zones (i.e., small cubes with 8 nodes). Values of variables
are associated either with each node (called a nodal
variable) or with each zone (called a zonal variable).
Djehuty-50gb has 7,840K zones, 18 variables, and 25
time steps.

Figure 6. The Djehuty-50gb Data Set

Table 1 lists the number of levels needed to build a

hierarchy for Djehuty-50gb along with their cell
populations. TOPOLOGY requires more levels to
complete the hierarchy than GRID since the former
approach needs to consider the underlying topology each
time it agglomerates cells. This consideration causes
TOPOLOGY to reach levels where it can only
agglomerate a few cells (as opposed to GRID where most
of the time it can agglomerate many grid cells together).

Table 2 presents the minimum, average, and maximum
number of children for nodes in each level of the GRID
and TOPOLOGY hierarchies for Djehuty-50gb. As
expected, the topology-based algorithm is able to
agglomerate fewer cells (on average) as it builds a
hierarchy. This is not the case for the grid-based
algorithm, where the average number of children can
equal the maximum number of children as the hierarchy is
built (e.g., level 3 in Table 2 �XQGHU�WKH�*5,'�FROXPQ��

Table 1. Number of Cells per Level for Djehuty-50gb

Level TOPOLOGY GRID
0 7840K 7840K
1 980850 980000
2 125462 131144
3 17356 16393
4 2751 2401
5 578 400
6 166 108
7 54 20
8 24 4
9 9 1

10 5
11 2
12 1

Table 2. Number of Children in Djehuty-50gb’s

Hierarchies (TOP = TOPOLOGY)

Min # of
Children

Avg # of
Children

Max # of
Children Level

TOP GRID TOP GRID TOP GRID
0 0 0 0.00 0.00 0 0
1 4 8 7.99 8.00 8 8
2 2 2 7.82 7.47 8 8
3 1 8 7.23 8.00 8 8
4 1 1 6.31 6.83 8 8
5 1 1 4.76 6.00 8 8
6 1 1 3.48 3.70 8 8
7 1 2 3.07 5.40 8 8
8 1 4 2.25 5.00 7 8
9 1 4 2.67 4.00 5 4

10 1 1.80 3
11 1 2.50 4
12 2 2.00 2

Table 3 presents the minimum, average, and maximum

percentage of non-empty space in the spatial bounding-
box of cells in each level of the GRID and TOPOLOGY
hierarchies for Djehuty-50gb. The minimum percentage
filled shows the bad quality of the original grid structure.
That is, there are fine grid cells (level 0) that are only
1.90% filled (i.e., they are 98.10% empty!). These grid
cells are in the boundaries of the star in our data sets. The
maximum percentage filled illustrates the good quality of
the grid structure. That is, there are fine grid cells (level
0) that do not have any empty space. These grid cells are
in the center of the star in our data sets. But even then,
the fine cells are not completely full (only 98.09%). The
average percentage filled shows how close the fit of
coarse cells are to their spatial bounding boxes (the higher
the percentage the better the fit). The root cell has the
best average percentage filled of about 52%.

Table 3. Percent Filled in Djehuty-50’s Hierarchies
(TOP = TOPOLOGY)

Min % Filled Avg % Filled Max % Filled
Level

TOP GRID TOP GRID TOP GRID
0 1.90 1.90 33.38 33.38 98.09 98.09
1 0.98 2.04 31.24 31.27 96.93 96.00
2 0.50 2.31 30.75 29.96 95.32 92.36
3 0.26 3.48 28.46 30.25 86.62 93.06
4 0.14 1.95 24.08 26.91 71.51 74.76
5 0.08 1.42 17.65 24.20 64.25 58.92
6 0.20 1.42 14.56 14.27 55.66 72.40
7 0.38 4.36 14.58 20.50 38.49 44.11
8 2.43 37.68 12.75 38.81 34.22 42.18
9 0.44 52.35 14.52 52.35 32.09 52.35

10 0.44 16.52 34.83
11 10.01 30.90 51.79
12 52.35 52.35 52.35

For Djehuty-50gb, the total number of cells in

hierarchies built by TOPOLOGY and GRID are 8967258
and 8970471, respectively. The percentages of leaf and non-
leaf cells for both hierarchies are about 87.4% and 12.6%,
respectively. Note that even though the TOPOLOGY
hierarchy is capturing more information from the data set,
it has the same percentage of non-leaf cells as the GRID
hierarchy. Moreover, the storage sizes for the hierarchies
generated by both algorithms are the same (5.02
gigabytes). However, the memory requirement for
TOPOLOGY is more than GRID since the former needs
to establish the neighbor information for the coarse cells.
For Djehuty-50gb, the memory requirements for
TOPOLOGY and GRID are 6.46 and 5.12 gigabytes,
respectively. Finally, the hierarchies for TOPOLOGY
and GRID were built in 83.8 and 6187.9 minutes,
respectively. This difference is partly due to the use of a
simple linear search in the GRID algorithm.

3. Future work

In our top-down approach, we are considering more
intelligent partitioning algorithms such as K-d and AVL
trees. For our grid-based algorithm, we are exploring
better searching strategies. For example, the simple linear
search for cells can be replaced with hashing techniques
that effectively decrease the number of cells to be
examined. Our topology-based algorithm relies on strictly
rectilinear (i.e., hexahedral) meshes and an “ octree like”
structure for the agglomerated levels. To remove these
strict assumptions, we are exploring the use of adaptive
meshes. In particular, we are examining ALE (short for
Arbitrary Lagrangian–Eulerian) meshes [3], where the
grid cells (most importantly the finest level cells) can be
of arbitrary polygonal shapes instead of hexahedrals. An
ALE mesh will ensure that the grid better conforms to the
complex shapes such as tetrahedrons. This new version of

our topology-based algorithm will have a more
complicated data structure but a less complex neighbor-
finding algorithm.

4. Conclusion

Creating scalable partitioning algorithms is an
important part of handling large-scale scientific data sets.
We describe the three-step evolution of a partitioning
algorithm for such data sets. Our first algorithm is a
traditional top-down approach, which does not scale well
to complex grid structures. The shortcomings of this
approach lead to our GRID algorithm, which utilizes a
bottom-up approach to construct hierarchies that conform
to local grid structures (imposed on data sets by
scientists). GRID generates hierarchies that are
independent of the data’s distribution over the initial grid.
However, it does not utilize the topology of the data. Our
TOPOLOGY algorithm alleviates this deficiency by
considering the neighbor structure of fine cells in grid
structures as well as the topological connections between
these fine cells to create a hierarchy. Our experimental
results show the effectiveness of our algorithms [2].

4. Acknowledgements

This work was performed under the auspices of the
U.S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.1. UCRL-JC-151476-REV-1. Our
thanks to W.J. Arrighi, J.K. Durrenberger, R.T.
Kamimura, N.A. Tang, and M.C. Thomas for their help.

5. References

[1] G. Abdulla, C. Baldwin, C., T. Critchlow, R. Kamimura, I.
Lozares, R. Musick, N.A. Tang, B. Lee, and R. Snapp,
“ Approximate Ad-Hoc Query Engine for Simulation Data,”
Proc. of the 1st ACM+IEEE Joint Conf. on Digital Libraries
(JCDL), ACM Press, 2001, pp. 255-256.

[2] C. Baldwin, T. Eliassi-Rad, G. Abdulla, and T. Critchlow,
“ The Evolution of a Hierarchical Partitioning Algorithm for
Large-Scale Scientific Data,” LLNL Technical Report, UCRL-
JC-151476, 2003.

[3] R.L. Bowers, and J.R. Wilson, Numerical Modeling in
Applied Physics and Astrophysics, Jones & Bartlett
Publishers, Boston, 1991.

[4] R. Musick, and T. Critchlow, “ Practical Lessons in
Supporting Large-Scale Computational Science,” Proc. of
SIGMOD Record, Vol. 28, No. 4, ACM Press, 1999, pp. 49-57.

[5] W. Wang, J. Yang, and R. Muntz, “ STING: A Statistical
Information Grid Approach to Spatial Data Mining,” Proc. of
the 23rd Int’l Conf. on Very Large Data Bases, Morgan
Kaufmann, 1997, pp. 186-195.

